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On Multiple Phase Transitions for Branching 
Markov Chains 
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We consider branching Markov chains on a countable set. We give a necessary 
and sufficient condition in terms of the transition kernel of the underlying 
Markov chain to have two phase transitions. We compute the critical values. 
We apply this result to prove that asymmetric branching random walks on Z 
have two phase transitions. 
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1. THE M O D E L  A N D  THE RESULTS 

Let p(x, y) be the transition kernel of a given Markov chain on a count- 
able set S. The evolution of a branching Markov chain on S is governed 
by the following rules. A particle at x gives birth to a new particle at y at 
rate 2p(x, y), where 2 > 0 is a parameter. A particle dies at rate 1. 

We will also be interested in the contact process, which is a Markov 
process with the same birth and death rates, but for which we do not allow 
more than one particle per site. For  the contact process p(x, y ) =  0 unless 
x and y are "nearest neighbors" with respect to a given distance on S. 

Let t/~ denote the branching Markov chain starting from a single 
particle at x and let t/~(y) be the number of particles at site y at time t. 
We denote the total number of particles of r/~ by Ir/~[ = ~y~s ~tt(Y). Let 0 
be a fixed site of S. We define the following critical parameters: 

"~1 = inf{2: p ( ) /o [ />  1, gt > 0) > 0} 

22 = inf{2: P(lim sup t/~ ~> 1) > 0} 
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The process tt/~ is a (nonspatial) Gal ton-Watson process, so it 1-- 1 for 
any p(x, y) and any S. 

We will say that we have two phase transitions when 21 < 22 (note 
that 21 is always smaller than or equal to 22). Our purpose here is to give 
a necessary and sufficient condition to have two phase transitions and to 
give an explicit formula for 22 depending on p(x, y). To do so, we need to 
analyze Pt(x, y), the continuous-time Markov chain corresponding to 
p(x, y). More precisely, the evolution of Pt(x, y) is governed by the 
following rule; after a mean 1 exponential time it jumps, going from x to 
y with probability p(x, y). By the Markov property we have 

e,+s(O, O)>~ P,(O, O)P,(O, O) 

This implies the existence of the following limit: 

1 1 
lim - l o g  Pt(O, O) = - 7  = sup - l o g  Pt(O, O) (1) 
,~o~ t t>o t 

Moreover, it is clear that 7 ) 0  and since Pt(O, O)>~e ~ (if there are no 
jumps up to time t), we get that 7 is in [0, 1]. 

We are now ready to state our result. 

The second critical value for a branching Markov T h e o r e m  1. 
chain is 

1 
)~2 = 1 - T for 7 in [0, 1) 

22=00 for 7 = 1  

In particular, there are two phase transitions for this model if and only if 
7va0. 

The problem of the existence of two phase transitions has been con- 
sidered by Pemantle, ~5) who proved that the symmetric contact process on 
a homogeneous tree has two phase transitions if each site of the tree has 
four neighbors or more, and by Schonmann, ~6) who proved that the 
asymmetric contact process on Z has two phase transitions if there is 
enough asymmetry. The symmetric contact process on Z a has been widely 
studied ~1-3) and it is known that for this process 21 = 22. 

Our motivation for this work was to understand the appearance of 
two phase transitions; we were in particular interested in understanding if 
the two phase transitions for the contact process on a tree and for the 
asymmetric contact process on Z had the same cause. While we were not 
able to answer these questions for the contact process, Theorem 1 provides 
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a very simple necessary and sufficient condition to have two phase 
transitions for any branching Markov chain on any countable set. This 
makes us conjecture that 7 ~ 0 is also a necessary and sufficient condition 
for the contact process to have two phase transitions. 

Madras and Schinazi (4/analyzed several models and computed 22 for 
a symmetric branching random walk on a homogeneous tree, showing that 
21 < '~2 on any homogeneous tree for which each site has three neighbors 
or more. The computation there uses in a crucial way the symmetry of the 
model. In particular, it is not possible to adapt the argument in ref. 4 to 
treat an asymmetric branching random walk on Z, and a new argument 
to prove Theorem 1 is needed. The new argument used here is simpler (it 
involves only a first moment analysis) and applies to a much more general 
situation. 

In ref. 4 there is also a proof that when there are two phase transitions, 
the second phase transition is not continuous in the following sense. 

Corollary 1. If 7 is in (0, 1), then the function 2-~ 
P(lim sup,~ ~ ~/~ 1) is not continuous at 22. 

The proof in ref. 4 (Theorem 4) works here, too, without modification. 

2. P R O O F  OF T H E O R E M  1 

The key to our analysis is the following lemma. 

L e m m a  1. If there is a time T such that E ( t /~  1, then 
lim Sup,~ oo P01~ >1 I) > 0. 

Proof of Lemma 1. We will construct a supercritical Gal ton-Watson 
process which is dominated (in a certain sense) by the branching Markov 
chain. To do so, we will first consider the following Markov process g/, 
whose evolution is coupled with the evolution of t/~ in the following way. 
Up to time T, g/, and qo are identical. At time T we suppress all the par- 
ticles of ~, which are not at site O and we keep the particles which are at O. 
Between times T and 2T  the particles of F/t which were at O at time T 
evolve like the particles of t/~ which were at O at time T. At time 2T we 

t 

suppress again all the particles of 0, which are not at O. And so on, at 
times k T  (k/> 1) we suppress all the particles of 0, which are not at O and 
between k T  and (k + 1)T  the particles of Ot evolve like the corresponding 
particles of q o. 

Now we can define the following discrete-time process ~i- Let ~o = 1 
and ~ =  0it(O). Using the fact that each particle evolves independently 
of the other particles, it is clear that ~ is a Gal ton-Watson process. 
Moreover, E ( ~ I )>  1, so ~i is a supercritical Gal ton-Watson process. On 
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the other hand, by our construction Or(x)<~tl~ for all x in S and all 
t ~> 0. And so 

P(~, >~ 1) ~< P( t l~  >~ 1) (2) 

But P(~i>~ 1, gi>~0)>0,  so making i go to infinity in (2) concludes the 
proof of Lemma 1. 

It is now easy to prove Theorem 1. Let mt(x)=E(t l~(O))  be the 
expected number of particles at O. We have the following representation of 
mt(x) [-see, for instance, (2.3) in ref. 4] 

mr(x) = e (~- 1)~P~t(x, O) (3) 

Using (1) and (3), we get for all t~>O 

m~(O) <<. e ct (4) 

for C = 2 - 1 - 2 y .  If y < l ,  we observe that if 2 < 1 / ( 1 - 7 ) ,  then C < 0 .  
But P(tl~ 1)<~ mt(O), so using the Borel-Cantelli lemma, we find that 
(4) implies that 

P(lim sup t/~ ~> 1 ) = 0  
t ~ o o  

and this shows that 22 f>1 / (1 -  7) for 7<1 .  For 7=1 ,  (4) holds with 
C =  -1 ,  s o  2 2 = (30. 

For 7 < 1 we will now prove the other inequality. Suppose that 
2 >  1/ (1-7) .  Again, using (t) and (3), we get that for t sufficiently large 
there is a constant D > 0 depending on 2 and 7 such that 

mr(O) >~ e ~ 

But now we can apply Lemma 1 and so we get that 22<--. 1 / (1-7) .  This 
finishes the proof of Theorem 1. 

3. ONE APPLICATION:  THE A S Y M M E T R I C  B R A N C H I N G  
R A N D O M  W A L K  

Consider the asymmetric branching random walk (ABRW) on Z. 
A particle at x gives birth to a particle at x + 1 at rate 2 ,  A particle at x 
gives birth to a particle at x - 1  at rate 2t. A particle dies at rate 1. So 
2 = 2,. + 2t, p(x, x + 1) = 2r/2 and p(x, x -- 1) = 2l/2. The other entries of 
p(x, y) are zero. 

For this example Y is easily computed. Let p2,,(O, O) be the probabil- 
ity that the discrete-time random walk is in O at time 2n. An elementary 
computation shows that 

lim p2,,(O, O) = 1 
, ~  ~ (4pq)" (Tzn) -1/2 
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where p = p ( x , x +  1) and q = p ( x , x - 1 ) .  It is then easy to get the 
following limit in continuous time: 

lim 1 log Pt(O, O) = 2(pq) m - 1 = 2 
t ~ o ~  t 

(;~r,~t) 1/2 

The two critical values 21 = 1 and 22 = 1/(1 - 7 )  can be written using 
2 r and 2t. We get for the first critical line 

2 r + 2 l =  1 

and for the second critical line 

42r2x = t 

In particular, the only intersection point of these two lines is 2r = ;tt = 1/2. 
This proves that any asymmetry in this model causes two phase transitions. 
This was conjectured by Schonmann (6~ (see ref. 6, and open problem 2) for 
the contact process. The contact process has the same birth rates and death 
rates as the ABRW except that there is at most one particle per site (so if 
a birth is attempted at an occupied site, this birth is suppressed). This addi- 
tional condition makes things much more delicate to analyze than for the 
ABRW. Schonmann was able to prove that there are two phase transitions 
for )~r large enough, but the problem of showing that any asymmetry causes 
two phase transitions is still open. Our analysis for the ABRW supports his 
conjecture. 
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